Tuesday, April 30, 2019

Hearing Dean Martin singing "Volare".....it's something a little special.



David Szondy
Hey pallies, likes the noteworthy news that our most beloved Dino's classic croon, "Volare" was swankly selected as "the first radio transmission and reception using lasers" at Harvard University is bein' powerfully proclaimed in likes terrifically tons of supreme sites all over the world wide web.
Now we ain't plannin' on sharin' each and every one of 'em with all youse Dino-holics, but likes today we couldn't resist givin' youse 'nother excellent example of the wonderful ways that this  delightful Dino-occurrence is makin' the scene on technology sites.

From the 'net space of "NEW ATLAS" which says 'bout it's mission that it  "has been celebrating innovation and human endeavor since our first website launched on March 1, 2002."  "Initially called Gizmag, we changed our name to New Atlas in 2016 to better reflect what we do. An atlas is a collection of maps, and maps are the tools we use to explore and define new frontiers. That's our mission at New Atlas: we want to trace the development of extraordinary ideas that move the world forward"

Likes as we read these incredible introductory remarks, we can't help but competely  celebrate how our awesomely amazin' Dino himself explored and defined new frontiers through his life, his times, and his teachin's as well....truly a rare remarkable renaissance man of extraordinary gifts.

So how fabulously fittin' is it that Mr. David Szondy (pictured above) sez in his remarkable report that "Hearing Dean Martin singing "Volare" on the radio may not seem that earthshaking, but when it's the first radio transmission and reception using lasers, it's something a little special."

We, of course, would sez that our Dino is something very very very special!!!!!  We thanks the pallies at "NEW ATLAS" for lovin'ly liftin' up the name of our Dino and through Szondy's wise words learnin' how our Dino has been coolly chosen as the first voice to be transmitted usin' lasers to generate radio signals.  And thinks pallies of what is Dino-first will do for welcomin' so so many more pallies in our Dino's wonderful world!  To checks this out in it's original source, likes simply clicks on the tag of this Dino-message.  And, of course, we just have to offer 'nother youtube vid of our Dino croonin' "Volare" from an episode of "The Hollywood Palace" that he was hostin'

We Remain,

Yours in Dino,

Dino Martin Peters



World's first laser radio transmitter/receiver paves way for ultra-high-speed Wi-Fi


David Szondy

New technology uses lasers to generate radio signals

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have, for the first time, used a semiconductor laser to send and receive radio signals. The hybrid electronic-photonic device uses a laser to extract and transmit microwave signals, providing a data rate that may one day lead to ultra-high-speed Wi-Fi.

Hearing Dean Martin singing "Volare" on the radio may not seem that earthshaking, but when it's the first radio transmission and reception using lasers, it's something a little special. According to the team behind the new technology, the laser not only emitted microwaves wirelessly, but also modulated them and received outside radio signals.

Working on previous research by the team in 2017 and 2018, the laser radio works by means of an infrared laser frequency comb. A garden variety laser generates light at a single frequency, much like a violin playing a precise note as opposed to a white noise generator spewing out the whole spectrum of sound. In a frequency comb, the laser produces multiple beams at multiple frequencies that are evenly spaced apart like the teeth of a comb, hence the term.

The laser uses different frequencies of light beating together to generate microwave radiation

 In 2018, the SEAS team found that the light "teeth" of the laser comb could be made to resonate against one another, causing the electrons in the cavity of the laser to oscillate at microwave frequencies in the radio band of the spectrum. In the top electrode of the device, there's an etched slot that acts as a dipole antenna, like the rabbit ears on an old-fashioned analog television.

By modulating the comb, the team was able to encode data on the microwave emission. This was then transmitted by the antenna to its reception point, where it was picked up by a horn antenna before being filtered and decoded by a computer. In addition, the laser technology could also receive radio signals, and the laser's behavior could be controlled remotely using microwaves from a second device.

"This all-in-one, integrated device, holds great promise for wireless communication," says Marco Piccardo, a postdoctoral fellow at SEAS. "While the dream of terahertz wireless communication is still a ways away, this research provides a clear roadmap showing how to get there."

The research was published in the Proceedings of the National Academy of Sciences.

Source: Harvard University



2 comments:

Danny G. said...

Cool stuff, pal! Hi-tech Dino...lasers even...somethin' right outta a Helm flick! Haha!!

dino martin peters said...

Hey pallie, likes Danny-o, what a cool cool Dino-connect! Keeps lovin' 'n sharin' our transformational DINO!